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Abstract

Chiral 3-N-mesitylenesulfonyl-1,3-oxazolidin-2-ones 4a–e derived from (L)- and (D)-amino acids 1a–e undergo lateral lithiation with
lithium diisopropylamide and TMEDA in anhydrous THF to provide new optically-active 1,2-benzothiazin-3-one 1,1-dioxide derivatives
5a–e with yields ranging from 63% to 79%.
� 2008 Elsevier Ltd. All rights reserved.
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Table 1

Entry R Mp (�C) [a]D (c 1, CHCl3) Yield (%)a

4a i-Pr 191–192 +175 90
4b sec-Bu 84–86 +95 88
Benzothiazinone 1,1-dioxides represent a class of hetero-
cycles that have received continuing attention in pharma-
ceutical research. Examples of such compounds include
non-steroidal anti-inflammatory drugs (NSAIDs) widely
used in the treatment of rheumatoid arthritis and other
inflammatory diseases.1,2 Furthermore, six-membered
heterocycles containing the sulfamyl group have also been
utilized as therapeutic agents to treat several diseases.3,4

Owing to these important biological benefits, several
synthetic approaches to 1,2-benzothiazinone 1,1-dioxides
have been described in the literature. Almost all of these
are based on the cyclization of an ortho-substituted sulfon-
amide to form the thiazine ring.5 The first example was
reported by Lombardino6 and involved the lithiation of
N-benzyl-o-toluenesulfonamide with n-BuLi, followed by
the treatment of the dilithio intermediate with CO2 and
then cyclodehydration, leading to the desired product. Bar-
reiro and co-workers have described the synthesis of benzo-
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thiazin-3-one 1,1-dioxide starting from natural safrole.7,8

No examples of chiral 1,2-benzothiazin-3-one 1,1-dioxides
were known when our work was initiated.

Following our investigations on developing synthetically
useful anionic aromatic reactions for the synthesis of bio-
logically active compounds,9–11 we report lateral lithiation
of 3-N-mesitylenesulfonyl-1,3-oxazolidin-2-ones as a prac-
tical and efficient synthesis of new chiral 1,2-benzothia-
zin-3-one 1,1-dioxides 5a–e. These heterocycles have
potentially great pharmaceutical importance and are
required for the evaluation of biological activities and as
starting materials to prepare new drugs.
4c i-Bu 143–145 +105 86
4d Bn 113–115 +135 86
4e Ph 93–95 �192 82

a Yield from 3a–e.
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Scheme 1.

Table 2

Pre-cyclization
product

Producta R Mp
(�C)

[a]D (c, CHCl3) Yield
(%)

4a 5a i-Pr 53–55 +40 (0.2) 76
4b 5b sec-Bu 73–75 �25 (0.2) 69
4c 5c i-Bu — +40 (0.2) 70
4d 5d Bn 94–96 +30 (0.5) 79
4e 5e Ph 78–80 +45 (0.2) 63

a Identification of products was accomplished from 1H, 13C and C–H
correlation NMR spectra and by FTIR spectroscopy. Satisfactory
elemental analytical data were obtained.25
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The starting compounds, (4S)-alkyl-3-N-mesitylene-
sulfonyl-1,3-oxazolidin-2-ones 4a–d and (4R)-phenyl-3-N-
mesitylenesulfonyl-1,3-oxazolidin-2-one 4e (Table 1), were
prepared in three steps starting from the corresponding
(L)- and (D)-amino acids 1a–e according to our previously
described procedures12 (Scheme 1).

The utility of directed lateral metalation (DreM)–
cyclization reactions in organic synthesis has been widely
demonstrated by Snieckus and others.13–17 Also, lateral
metalation18,19 has been reported for o-tolylsulfonamide,
p-tolylcarbamide,20 p-tolylsulfonates21 and p-tolylsulfon-
amide22 which undergo benzylic deprotonation. We have
found that the lithiation of 3-N-mesitylenesulfonyl-1,3-
oxazolidin-2-ones 4a–e constitutes a mild method for the
preparation of novel chiral 1,2-benzothiazin-3-one 1,1-
dioxide derivatives 5a–e (Scheme 2).

Initially, an investigation of the optimum reaction
conditions for the synthesis of compounds 5a–e was under-
taken. Thus, the treatment of N-mesitylenesulfonyloxazol-
idin-2-ones 4a–e with various equivalents of LDA at low
and room temperatures failed, in all cases, to bring about
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the reaction. We then resorted to the optimized conditions
of Lohse and co-workers.17 Thus, the treatment of com-
pounds 4a–e with 2.5 equiv of LDA–TMEDA resulted in
lateral metalation–cyclization to provide 1,2-benzothia-
zin-3-one 1,1-dioxides but in low conversions. Increasing
the equivalents of LDA–TMEDA improved the yields;
however, prolonging the reaction time led to the formation
of side products. Finally, we found that the use of 6 equiv
of LDA–TMEDA at�20 �C, possibly for the deprotonation
of the three methyls of the aromatic ring (Fig. 1) was effi-
cient, leading after 30 min to the desired 1,2-benzothia-
zin-3-one 1,1-dioxides 5a–e in good yields23 (Table 2).
This process was possibly driven by complex-induced prox-
imity effects.13,24

In summary, the efficient four-step process described in
this Letter has enabled us to prepare chiral 1,2-benzothia-
zin-3-one 1,1-dioxides from inexpensive and readily avail-
able amino acids. The anti-inflammatory activity of these
new products is under test in our laboratory.
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